Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611827

RESUMO

Essential oil (EO) of Salvia spp. has been widely used for culinary purposes and in perfumery and cosmetics, as well as having beneficial effects on human health. The present study aimed to investigate the quantitative and qualitative variations in EOs in wild-growing and cultivated pairs of samples from members in four Salvia sections or three clades, namely S. argentea L. (Sect. Aethiopis; Clade I-C), S. ringens Sm. (Sect. Eusphace; Clade I-D), S. verticillata L. (Sect. Hemisphace; Clade I-B), S. amplexicaulis Lam., and S. pratensis L. (Sect. Plethiosphace; Clade I-C). Furthermore, the natural variability in EO composition due to different genotypes adapted in different geographical and environmental conditions was examined by employing members of three Salvia sections or two phylogenetic clades, namely S. sclarea L. (six samples; Sect. Aethiopis or Clade I-C), S. ringens (three samples; Sect. Eusphace or Clade I-D), and S. amplexicaulis (five samples; Sect. Plethiosphace or Clade I-C). We also investigated the EO composition of four wild-growing species of two Salvia sections, i.e., S. aethiopis L., S. candidissima Vahl, and S. teddii of Sect. Aethiopis, as well as the cultivated material of S. virgata Jacq. (Sect. Plethiosphace), all belonging to Clade I-C. The EO composition of the Greek endemic S. teddii is presented herein only for the first time. Taken together, the findings of previous studies are summarized and critically discussed with the obtained results. Chemometric analysis (PCA, HCA, and clustered heat map) was used to identify the sample relationships based on their chemical classes, resulting in the classification of two distinct groups. These can be further explored in assistance of classical or modern taxonomic Salvia studies.


Assuntos
Óleos Voláteis , Salvia , Humanos , Quimiometria , Filogenia , Genótipo , Salvia/genética
2.
Sci Rep ; 14(1): 5017, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424151

RESUMO

Range contraction and habitat fragmentation can cause biodiversity loss by creating conditions that directly or indirectly affect the survival of plant populations. Fragmented habitats can alter pollinator guilds and impact their behavior, which may result in pollen/pollinator limitation and selection for increased selfing as a mechanism for reproductive assurance. We used Salvia brachyodon, a narrowly distributed and endangered sage from eastern Adriatic, to test the consequences of range contraction and habitat fragmentation. Molecular data indicate a severe and relatively recent species range reduction. While one population is reproductively almost completely isolated, moderate gene flow has been detected between the remaining two populations. The high pollen-to-ovule ratio and the results of controlled hand pollination indicate that S. brachyodon has a mixed mating system. Quantitative and qualitative differences in the community and behaviour of flower visitors resulted in limited pollination services in one population where no effective pollinator other than pollen and nectar robbers were observed. In this population, self-pollination predominated over cross-pollination. Various environmental factors, in which plant-pollinator interactions play a pivotal role, have likely created selection pressures that have led to genetic and phenotypic differentiation and different resource allocation strategies among populations.


Assuntos
Fluxo Gênico , Salvia , Salvia/genética , Polinização , Néctar de Plantas , Reprodução , Flores
3.
Genes (Basel) ; 15(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38254999

RESUMO

The MYB transcription factor gene family is among the most extensive superfamilies of transcription factors in plants and is involved in various essential functions, such as plant growth, defense, and pigment formation. Salvia nemorosa is a perennial herb belonging to the Lamiaceae family, and S. nemorosa has various colors and high ornamental value. However, there is little known about its genome-wide MYB gene family and response to flower color formation. In this study, 142 SnMYB genes (MYB genes of S. nemorosa) were totally identified, and phylogenetic relationships, conserved motifs, gene structures, and expression profiles during flower development stages were analyzed. A phylogenetic analysis indicated that MYB proteins in S. nemorosa could be categorized into 24 subgroups, as supported by the conserved motif compositions and gene structures. Furthermore, according to their similarity with AtMYB genes associated with the control of anthocyanin production, ten SnMYB genes related to anthocyanin biosynthesis were speculated and chosen for further qRT-PCR analyses. The results indicated that five SnMYB genes (SnMYB75, SnMYB90, SnMYB6, SnMYB82, and SnMYB12) were expressed significantly differently in flower development stages. In conclusion, our study establishes the groundwork for understanding the anthocyanin biosynthesis of the SnMYB gene family and has the potential to enhance the breeding of S. nemorosa.


Assuntos
Salvia , Fatores de Transcrição , Fatores de Transcrição/genética , Salvia/genética , Antocianinas/genética , Filogenia , Melhoramento Vegetal
4.
Phytochem Anal ; 35(3): 493-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114450

RESUMO

INTRODUCTION: The plant essential oils are composed of volatile compounds and have significant value in preventing and treating neurological diseases, anxiety, depression, among others. The genus Salvia has been shown to be an important medicinal resource, especially the aerial parts of genus Salvia, which are rich in volatile compounds; however, the chemical diversity and distribution patterns of volatile compounds in Salvia species are still unknown. OBJECTIVE: The work is performed to analyse the chemical diversity and distribution patterns of volatile compounds in genus Salvia. METHODS: The genomic single nucleotide polymorphisms (SNPs) combined with gas chromatography-mass spectrometry (GC-MS) were used to explore the evolution and chemical diversity of Salvia volatile compounds. Initially, the genetic relationship of genus Salvia was revealed by phylogenetic tree that was constructed based on SNPs. And then, GC-MS was applied to explore the chemical diversity of volatile compounds. RESULTS: The results indicated that the volatile compounds were mainly monoterpenoids, sesquiterpenoids, and aliphatic compounds. The genomic SNPs divided species involved in this work into four branches. The volatile compounds in the first and second branches were mainly sesquiterpenoids and monoterpenoids, respectively. Species in the third branch contained more aliphatic compounds and sesquiterpenoids. And those in the fourth branch were also rich in monoterpenoids but had relatively simple chemical compositions. CONCLUSION: This study offered new insights into the phylogenetic relationships besides chemistry diversity and distribution pattern of volatile compounds of genus Salvia, providing theoretical guidance for the investigations and development of secondary metabolites.


Assuntos
Óleos Voláteis , Salvia , Sesquiterpenos , Salvia/genética , Salvia/química , Filogenia , Óleos Voláteis/química , Óleos de Plantas/química , Monoterpenos
5.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895107

RESUMO

In this research, a HPLC analysis, along with transcriptomics tools, was applied to evaluate chitosan and water stress for the prediction of phenolic flavonoids patterns and terpenoid components accumulation in Salvia abrotanoides Karel and S. yangii. The results indicated that the tanshinone contents under drought stress conditions increased 4.2-fold with increasing drought stress intensity in both species. The rosmarinic acid content in the leaves varied from 0.038 to 11.43 mg/g DW. In addition, the flavonoid content was increased (1.8 and 1.4-fold) under mild water deficit conditions with a moderate concentration of chitosan (100 mg L-1). The application of foliar chitosan at 100 and 200 mg L-1 under well-watered and mild stress conditions led to increases in hydroxyl cryptotanshinone (OH-CT) and cryptotanshinone (CT) contents as the major terpenoid components in both species. The expressions of the studied genes (DXS2, HMGR, KSL, 4CL, and TAT) were also noticeably induced by water deficit and variably modulated by the treatment with chitosan. According to our findings, both the drought stress and the application of foliar chitosan altered the expression levels of certain genes. Specifically, we observed changes in the expression levels of DXS and HMGR, which are upstream genes in the MEP and MVA pathways, respectively. Additionally, the expression level of KSL, a downstream gene involved in diterpenoid synthesis, was also affected. Finally, the present investigation confirmed that chitosan treatments and water stress were affected in both the methylerythritol phosphate pathway (MEP) and mevalonate (MVA) pathways, but their commitment to the production of other isoprenoids has to be considered and discussed.


Assuntos
Quitosana , Salvia , Terpenos/metabolismo , Salvia/genética , Salvia/metabolismo , Transcriptoma , Desidratação , Flavonoides
6.
Sci Rep ; 13(1): 14268, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652950

RESUMO

Salvia is widely used as medicine, food, and ornamental plants all over the world, with three main distribution centers, the Central and western Asia/Mediterranean (CAM), the East Aisa (EA), and the Central and South America (CASA). Along with its large number of species and world-wide distribution, Salvia is paraphyletic with multiple diversity. Chloroplast genomes (CPs) are useful tools for analyzing the phylogeny of plants at lower taxonomic levels. In this study, we reported chloroplast genomes of five species of Salvia and performed phylogenetic analysis with current available CPs of Salvia. Repeated sequence analysis and comparative analysis of Salvia CPs were also performed with representative species from different distribution centers. The results showed that the genetic characters of the CPs are related to the geographic distribution of plants. Species from CAM diverged first to form a separate group, followed by species from EA, and finally species from CASA. Larger variations of CPs were observed in species from CAM, whereas more deficient sequences and less repeated sequences in the CPs were observed in species from CASA. These results provide valuable information on the development and utilization of the worldwide genetic resources of Salvia.


Assuntos
Genoma de Cloroplastos , Salvia , Ásia Ocidental , América Central , Filogenia , Salvia/genética
7.
Nat Commun ; 14(1): 4696, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542034

RESUMO

The genus Salvia L. (Lamiaceae) comprises myriad distinct medicinal herbs, with terpenoids as one of their major active chemical groups. Abietane-type diterpenoids (ATDs), such as tanshinones and carnosic acids, are specific to Salvia and exhibit taxonomic chemical diversity among lineages. To elucidate how ATD chemical diversity evolved, we carried out large-scale metabolic and phylogenetic analyses of 71 Salvia species, combined with enzyme function, ancestral sequence and chemical trait reconstruction, and comparative genomics experiments. This integrated approach showed that the lineage-wide ATD diversities in Salvia were induced by differences in the oxidation of the terpenoid skeleton at C-20, which was caused by the functional divergence of the cytochrome P450 subfamily CYP76AK. These findings present a unique pattern of chemical diversity in plants that was shaped by the loss of enzyme activity and associated catalytic pathways.


Assuntos
Diterpenos , Salvia , Salvia/genética , Salvia/metabolismo , Abietanos , Filogenia , Terpenos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
8.
Commun Biol ; 6(1): 820, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550387

RESUMO

Chia (Salvia hispanica) is an emerging crop considered a functional food containing important substances with multiple potential applications. However, the molecular basis of some relevant chia traits, such as seed mucilage and polyphenol content, remains to be discovered. This study generates an improved chromosome-level reference of the chia genome, resolving some highly repetitive regions, describing methylation patterns, and refining genome annotation. Transcriptomic analysis shows that seeds exhibit a unique expression pattern compared to other organs and tissues. Thus, a metabolic and proteomic approach is implemented to study seed composition and seed-produced mucilage. The chia genome exhibits a significant expansion in mucilage synthesis genes (compared to Arabidopsis), and gene network analysis reveals potential regulators controlling seed mucilage production. Rosmarinic acid, a compound with enormous therapeutic potential, was classified as the most abundant polyphenol in seeds, and candidate genes for its complex pathway are described. Overall, this study provides important insights into the molecular basis for the unique characteristics of chia seeds.


Assuntos
Salvia hispanica , Salvia , Salvia/genética , Multiômica , Proteômica , Sementes/genética , Polissacarídeos
9.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375266

RESUMO

Salvia is a large genus with hundreds of species used in traditional Chinese medicine. Tanshinones are a highly representative class of exclusive compounds found in the Salvia genus that exhibit significant biological activity. Tanshinone components have been identified in 16 Salvia species. The CYP76AH subfamily (P450) is crucial for the synthesis of tanshinone due to its catalytic generation of polyhydroxy structures. In this study, a total of 420 CYP76AH genes were obtained, and phylogenetic analysis showed their clear clustering relationships. Fifteen CYP76AH genes from 10 Salvia species were cloned and studied from the perspectives of evolution and catalytic efficiency. Three CYP76AHs with significantly improved catalytic efficiency compared to SmCYP76AH3 were identified, providing efficient catalytic elements for the synthetic biological production of tanshinones. A structure-function relationship study revealed several conserved residues that might be related to the function of CYP76AHs and provided a new mutation direction for the study of the directed evolution of plant P450.


Assuntos
Salvia miltiorrhiza , Salvia , Salvia/genética , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/química , Filogenia , Abietanos/química , Raízes de Plantas/química
10.
Plant Physiol Biochem ; 199: 107737, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37163804

RESUMO

Chia (Salvia hispanica) is a functional food crop with high α-linolenic acid (ALA), the omega-3 essential fatty acid, but its worldwide plantation is limited by cold-intolerance and strict short-photoperiod flowering feature. Fatty acid desaturases (FADs) are responsible for seed oil accumulation, and play important roles in cold stress tolerance of plants. To date, there is no report on systemically genome-wide analysis of FAD genes in chia (ShiFADs). In this study, 31 ShiFAD genes were identified, 3 of which contained 2 alternative splicing transcripts, and they were located in 6 chromosomes of chia. Phylogenetic analysis classified the ShiFAD proteins into 7 groups, with conserved gene structure and MEME motifs within each group. Tandem and segmental duplications coursed the expansion of ShiFAD genes. Numerous cis-regulatory elements, including hormone response elements, growth and development elements, biotic/abiotic stress response elements, and transcription factor binding sites, were predicted in ShiFAD promoters. 24 miRNAs targeting ShiFAD genes were identified at whole-genome level. In total, 15 SSR loci were predicted in ShiFAD genes/promoters. RNA-seq data showed that ShiFAD genes were expressed in various organs with different levels. qRT-PCR detection revealed the inducibility of ShiSAD2 and ShiSAD7 in response to cold stress, and validated the seed-specific expression of ShiSAD11a. Yeast expression of ShiSAD11a confirmed the catalytic activity of its encoded protein, and its heterologous expression in Arabidopsis thaliana significantly increased seed oleic acid content. This work lays a foundation for molecular dissection of chia high-ALA trait and functional study of ShiFAD genes in cold tolerance.


Assuntos
Ácidos Graxos Dessaturases , Salvia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Salvia hispanica , Filogenia , Salvia/genética , Salvia/metabolismo , Óleos de Plantas/química , Sementes/metabolismo
11.
Genes (Basel) ; 14(4)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37107629

RESUMO

Salvia yangii B.T. Drew and Salvia abrotanoides Kar are two important fragrant and medicinal plants that belong to the subgenus Perovskia. These plants have therapeutic benefits due to their high rosmarinic acid (RA) content. However, the molecular mechanisms behind RA generation in two species of Salvia plants are still poorly understood. As a first report, the objectives of the present research were to determine the effects of methyl jasmonate (MeJA) on the rosmarinic acid (RA), total flavonoid and phenolic contents (TFC and TPC), and changes in the expression of key genes involved in their biosynthesis (phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), and rosmarinic acid synthase (RAS)). The results of High-performance liquid chromatography (HPLC) analysis indicated that MeJA significantly increased RA content in S. yungii and S. abrotanoides species (to 82 and 67 mg/g DW, respectively) by 1.66- and 1.54-fold compared with untreated plants. After 24 h, leaves of Salvia yangii and Salvia abrotanoides species treated with 150 M MeJA had the greatest TPC and TFC (80 and 42 mg TAE/g DW, and 28.11 and 15.14 mg QUE/g DW, respectively), which was in line with the patterns of gene expression investigated. Our findings showed that MeJA dosages considerably enhanced the RA, TPC, and TFC contents in both species compared with the control treatment. Since increased numbers of transcripts for PAL, 4CL, and RAS were also detected, the effects of MeJA are probably caused by the activation of genes involved in the phenylpropanoid pathway.


Assuntos
Salvia , Salvia/genética , Salvia/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Fenóis
12.
Plant Physiol Biochem ; 196: 318-327, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738511

RESUMO

The diversity of plant monoterpenes is largely based on the catalytic activity of monoterpene synthases. Additionally, copy number variation of monoterpene synthase genes may contribute to the quantity of transcripts and hence to the essential oil profile. This study used whole-genome sequencing and digital PCR for the measurement of copy number variation and quantification of gene expression in three closely related Salvia species, namely Salvia officinalis, Salvia pomifera and Salvia fruticosa. Twelve, 13 and 15 monoterpene synthase-encoding open-reading frames were predicted for Salvia officinalis, Salvia pomifera and Salvia fruticosa, respectively. In Salvia officinalis, one of the open reading frames was disrupted indicating a pseudogene. Monoterpene synthase genes were generally single copy per haploid genome, only a few were double or triple copy genes. Expression levels of monoterpene synthases in leaves corresponded generally well with essential oil composition. In some cases, a higher expression level of a certain monoterpene synthase could be explained by its duplication or triplication. The very high content of thujones in Salvia pomifera, for example, was accompanied by gene duplication and increased gene expression of (+)-sabinene synthase responsible for the thujone precursor sabinene. In Salvia officinalis, three individuals different in their essential oil profile showed significant differences in their monoterpene synthase expression levels corresponding roughly to the profile of the essential oils. Transcript expression of monoterpene synthase genes were measured in leaf, calyx and corolla. The corolla differed significantly from leaves, while calyces usually showed a profile intermediary between leaf and corolla.


Assuntos
Óleos Voláteis , Salvia officinalis , Salvia , Salvia officinalis/genética , Salvia officinalis/metabolismo , Variações do Número de Cópias de DNA , Monoterpenos/metabolismo , Salvia/genética , Salvia/metabolismo , Óleos Voláteis/metabolismo
13.
Phytochemistry ; 209: 113611, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804479

RESUMO

Salvia hispanica L., commonly named Chia, is a food plant from Central America and Australia, producing seeds whose consumption has been increasing in the last decade. Several articles analysed the seeds metabolite content. However, few is known about Chia leaves. This work is the first report on the whole metabolite profile of chia leaves, determined by spectroscopic methods including NMR, GC-MS and LC-MS coupled with chemometrics analysis. Additionally, molecular networking has been applied to the LC-MS data to determine the flavonoid composition. Different chia sources were compared: one commercial (black) and three early flowering (G3, G8 and G17) mutant genotypes cultivated at two irrigation regimes (50 and 100%). Organic extracts were mainly composed by saturated and mono- and polyunsaturated fatty acids with palmitic being the most abundant followed by oleic and linolenic acids. Aqueous extracts contained glucose, galactose, and fructose as main sugars. Flavonoids were based on vitexin and orientin and their analogues. Chemical composition of early flowering genotypes was quite similar to commercial black chia with the exception of G8 showing significant differences in the polar phase. A generally highest content of omega-9 fatty acids has been found in the early flowering genotypes along with high content of nutraceuticals suggesting them as a potential source of raw materials for the food/feed industry.


Assuntos
Salvia hispanica , Salvia , Salvia/genética , Salvia/química , Ácidos Graxos Insaturados , Ácidos Graxos/análise , Genótipo , Sementes/química
14.
J Evol Biol ; 36(3): 589-604, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759951

RESUMO

Salvia is the most species-rich genus in Lamiaceae, encompassing approximately 1000 species distributed all over the world. We sought a new evolutionary perspective for Salvia by employing macroevolutionary analyses to address the tempo and mode of diversification. To study the association of floral traits with speciation and extinction, we modelled and explored the evolution of corolla length and the lever-mechanism pollination system across our Salvia phylogeny. We reconstructed a multigene phylogeny for 366 species of Salvia in the broad sense including all major recognized lineages and 50 species from Iran, a region previously overlooked in studies of the genus. Our comprehensive sampling of Iranian species of Salvia provides higher phylogenetic resolution for southwestern Asian species than obtained in previous studies. Our phylogenetic data in combination with divergence time estimates were used to examine the evolution of corolla length, woody versus herbaceous habit, and presence versus absence of a lever mechanism. We investigated the timing and dependence of Salvia diversification related to corolla length evolution through a disparity test and BAMM analysis. A HiSSE model was used to evaluate the dependency of diversification on the lever-mechanism pollination system in Salvia. A medium corolla length (15-18 mm) was reconstructed as the ancestral state for Salvia with multiple shifts to shorter and longer corollas. Macroevolutionary model analyses indicate that corolla length disparity is high throughout Salvia evolution, significantly different from expectations under a Brownian motion model during the last 28 million years of evolution. Our analyses show evidence of a higher diversification rate of corolla length for some Andean species of Salvia compared to other members of the genus. Based on our tests of diversification models, we reject the hypothesis of a direct effect of the lever mechanism on Salvia diversification. Therefore, we suggest caution in considering the lever-mechanism pollination system as one of the main drivers of speciation in Salvia.


Assuntos
Evolução Biológica , Salvia , Filogenia , Salvia/genética , Irã (Geográfico) , Flores
15.
Plant J ; 113(4): 819-832, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579923

RESUMO

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.


Assuntos
Diterpenos , Rosmarinus , Salvia , Rosmarinus/genética , Rosmarinus/metabolismo , Salvia/genética , Salvia/metabolismo , Abietanos/metabolismo , Diterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromossomos
16.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292964

RESUMO

To systematically determine their phylogenetic relationships and develop molecular markers for species discrimination of Salvia bowleyana, S. splendens, and S. officinalis, we sequenced their chloroplast genomes using the Illumina Hiseq 2500 platform. The chloroplast genomes length of S. bowleyana, S. splendens, and S. officinalis were 151,387 bp, 150,604 bp, and 151,163 bp, respectively. The six genes ndhB, rpl2, rpl23, rps7, rps12, and ycf2 were present in the IR regions. The chloroplast genomes of S. bowleyana, S. splendens, and S. officinalis contain 29 tandem repeats; 35, 29, 24 simple-sequence repeats, and 47, 49, 40 interspersed repeats, respectively. The three specific intergenic sequences (IGS) of rps16-trnQ-UUG, trnL-UAA-trnF-GAA, and trnM-CAU-atpE were found to discriminate the 23 Salvia species. A total of 91 intergenic spacer sequences were identified through genetic distance analysis. The two specific IGS regions (trnG-GCC-trnM-CAU and ycf3-trnS-GGA) have the highest K2p value identified in the three studied Salvia species. Furthermore, the phylogenetic tree showed that the 23 Salvia species formed a monophyletic group. Two pairs of genus-specific DNA barcode primers were found. The results will provide a solid foundation to understand the phylogenetic classification of the three Salvia species. Moreover, the specific intergenic regions can provide the probability to discriminate the Salvia species between the phenotype and the distinction of gene fragments.


Assuntos
Genoma de Cloroplastos , Salvia , Filogenia , Salvia/genética , Genômica/métodos , Repetições de Microssatélites , DNA Intergênico/genética
17.
J Adv Res ; 42: 221-235, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089521

RESUMO

INTRODUCTION: Salvia castanea, a wild plant species is adapted to extreme Qinghai-Tibetan plateau (QTP) environments. It is also used for medicinal purposes due to high ingredient of tanshinone IIA (T-IIA). Despite its importance to Chinese medicinal industry, the mechanisms associated with secondary metabolites accumulation (i.e. T-IIA and rosmarinic acid (RA)) in this species have not been characterized. Also, the role of special underground tissues in QTP adaptation of S. castanea is still unknown. OBJECTIVES: We explored the phenomenon of periderm-like structure in underground stem center of S. castanea with an aim to unravel the molecular evolutionary mechanisms of QTP adaptation in this species. METHODS: Morphologic observation and full-length transcriptome of S. castanea plants were conducted. Comparative genomic analyses of S. castanea with other 14 representative species were used to reveal its phylogenetic position and molecular evolutionary mechanisms. RNA-seq and WGCNA analyses were applied to understand the mechanisms of high accumulations of T-IIA and RA in S. castanea tissues. RESULTS: Based on anatomical observations, we proposed a "trunk-branches" developmental model to explain periderm-like structure in the center of underground stem of S. castanea. Our study suggested that S. castanea branched off from cultivated Danshen around 16 million years ago. During the evolutionary process, significantly expanded orthologous gene groups, 24 species-specific and 64 positively selected genes contributed to morphogenesis and QTP adaptation in S. castanea. RNA-seq and WGCNA analyses unraveled underlying mechanisms of high accumulations of T-IIA and RA in S. castanea and identified NAC29 and TGA22 as key transcription factors. CONCLUSION: We proposed a "trunk-branches" developmental model for the underground stem in S. castanea. Adaptations to extreme QTP environment in S. castanea are associated with accumulations of high secondary metabolites in this species.


Assuntos
Salvia , Salvia/genética , Salvia/metabolismo , Filogenia , Abietanos/metabolismo , Plantas/metabolismo , Genômica
18.
Cell Rep ; 40(7): 111236, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977487

RESUMO

The widely cultivated medicinal and ornamental plant sage (Salvia officinalis L.) is an evergreen shrub of the Lamiaceae family, native to the Mediterranean. We assembled a high-quality sage genome of 480 Mb on seven chromosomes, and identified a biosynthetic gene cluster (BGC) encoding two pairs of diterpene synthases (diTPSs) that, together with the cytochromes P450 (CYPs) genes located inside and outside the cluster, form two expression cascades responsible for the shoot and root diterpenoids, respectively, thus extending BGC functionality from co-regulation to orchestrating metabolite production in different organs. Phylogenomic analysis indicates that the Salvia clades diverged in the early Miocene. In East Asia, most Salvia species are herbaceous and accumulate diterpenoids in storage roots. Notably, in Chinese sage S. miltiorrhiza, the diterpene BGC has contracted and the shoot cascade has been lost. Our data provide genomic insights of micro-evolution of growth type-associated patterning of specialized metabolite production in plants.


Assuntos
Diterpenos , Salvia , Família Multigênica , Filogenia , Plantas/genética , Salvia/genética , Salvia/metabolismo
19.
J Food Sci ; 87(9): 3872-3887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35982647

RESUMO

This study aimed to determine the association between the seed coat color of two chia seed genotypes for their composition, protein content, amino acid, and fatty acid profiles. The optimal pH for protein isolation for both genotypes (BCPI and WCPI) was 10, based on protein purity and solubility. Fatty acid profiling indicated, overall, 18 different fatty acids higher in BCPI10 with linolenic acid domination (∼66%) followed by linoleic acid (∼19%) and oleic acid (∼6%), contributing PUFAs (∼86%). Optimized protein isolates, black (BCPI10) and white (WCPI10) chia, had shown purity, L*-value, solubility, and yields of 90.65%, 75.86%, 77.75%, 11.30%, and 90.00%, 77.83%, 76.07%, 10.69%, respectively. BCPI10 depicted higher EAA (33.19 g/100 g N) and EEA indices (57.676%) compared to WCPI10 (32.14 g/100 g N) and 56.360%, respectively. Amino acid profiling indicated higher, PER, TAA, TEAA, TNEAA, TAAA, TBA, acidic AA values for BCPI10, and higher leucine/isoleucine ratio for WCPI10 having leucine and sulfur amino acids as limiting amino acids. BCPI10 had higher sulfur-containing amino acid contents, as the main contributor to the albumin a water-soluble fraction, leading to its higher in vitro digestibility (71.97%) than WCPI10 (67.70%). Both isolates exhibited good WHC and OHC of 3.18, 2.39 and 3.00, 2.20, respectively. Both protein isolates had similar ∆Td (°C) values with some variation in FTIR spectrum from 1000 cm-1 to 1651 cm-1 having more peak intensity for BCPI10. SDS-PAGE indicated bands at 150 kDa, representing globulin and mild bands at 25-33 kDa for glutelin and albumin. A significant (p < 0.05) variation reported in this study for protein and lipid profiles of both genotype attributes to genetic differences between the seeds. PRACTICAL APPLICATION: Based on the nutritional profile, both chia seed isolates (black and white) are suitable for consumption with an edge for black seed when supplemented with their limiting amino acids. The high values of the functional properties and structural characteristics combined with high nutritional values make the chia protein isolate an excellent source of raw material for various food formulations. Fatty acid profile of the oils from the genotypes showed the presence of high amounts of unsaturated fatty acids, especially the PUFAs with more number of fatty acids in black chia seed. The excellent lipid profile of chia seed oil indicates the benefit of using chia seed oil as a source of essential fatty acids in the human diet for optimal health.


Assuntos
Aminoácidos Sulfúricos , Salvia , Albuminas , Aminoácidos Sulfúricos/análise , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Genótipo , Glutens/análise , Humanos , Isoleucina/análise , Leucina/análise , Ácidos Linoleicos/análise , Óleos/análise , Ácidos Oleicos/análise , Salvia/química , Salvia/genética , Salvia hispanica , Sementes/química , Enxofre/análise , Água/análise , Ácido alfa-Linolênico/análise
20.
Plant Commun ; 3(4): 100326, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605203

RESUMO

Chia (Salvia hispanica) is a functional food crop for humans. Although its seeds contain high omega-3 fatty acids, the seed yield of chia is still low. Genomic resources available for this plant are limited. We report the first high-quality chromosome-level genome sequence of chia. The assembled genome size was 347.6 Mb and covered 98.1% of the estimated genome size. A total of 31 069 protein-coding genes were predicted. The absence of recent whole-genome duplication and the relatively low intensity of transposable element expansion in chia compared to its sister species contribute to its small genome size. Transcriptome sequencing and gene duplication analysis reveal that the expansion of the fab2 gene family is likely to be related to the high content of omega-3 in seeds. The white seed coat color is determined by a single locus on chromosome 4. This study provides novel insights into the evolution of Salvia species and high omega-3 content, as well as valuable genomic resources for genetic improvement of important commercial traits of chia and its related species.


Assuntos
Ácidos Graxos Ômega-3 , Salvia , Cromossomos , Ácidos Graxos Ômega-3/genética , Humanos , Salvia/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...